- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Lippmann, Ethan S (1)
-
Murray, Heather N (1)
-
Yates, Alexis K (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Microfluidic devices are defined by the application of fluid flow to micron-scale features. Inherent to most experiments involving microfluidic devices is the need to precisely and reproducibly control fluid flow at the microliter scale, often through multiple inlet ports on a single device. While the number of fluid channels per device varies, perfusing multiple inputs requires either the use of multiple flow controllers (often syringe or peristaltic pumps) or the ability to evenly divide fluid across outlets. Towards the latter approach, while a handful of commercial systems exist for splitting fluid flow, these set-ups require significant financial investment, multiple flow control and sensing components, and restrict the user to a predetermined perfusion control system. Simple in-line splitting devices, such a manifolds or T junctions, fail to achieve flow splitting at low flow rates often used in microfluidic systems. To increase capabilities for flow-controlled experiments, we performed experimental analyses of the physical considerations governing even flow splitting under low flow, leading to the design of a microdevice (µ-Split) that can be directly inserted into existing microfluidic set-ups. The µ-Split allows for reproducible, even flow splitting from 10 uL/min to > 2.5 mL/min. By testing multiple device geometries in combination with multiphysics simulations, we identified the design and fabrication features underlying the splitting precision achieved by the µ-Split. Overall, this work provides a useful tool to simplify microfluidic experiments that require evenly divided flow streams, while minimizing the overall device footprint.more » « lessFree, publicly-accessible full text available June 1, 2026
An official website of the United States government
